Thaison Nguyen Option: Structural Faculty Advisor: Sustersic September 20, 2012

Technical Report I

Largo Medical Office Building

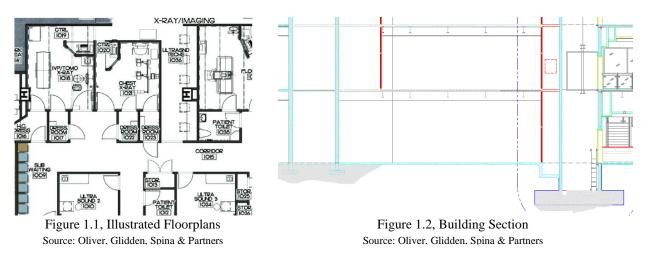
Largo, Florida

Table of Contents

Executive Summary
Building Overview
Structural System
Design Codes
Structural Materials Used
Framing & Lateral System
Floor System
Roof System
Gravity Loads
Dead Loads
Live Loads
Rain & Snow Loads
Gravity Spot Checks
Deck & Joist11
Beam & Girder
Column
Lateral Loads
Wind Load
Seismic Load
Conclusion
Appendix
Appendix A: Floor Plans and Elevations
Appendix B: Load Determination – Dead, Live, Rain
Appendix C: Gravity Load Calculations
Appendix D: Wind Load Calculations
Appendix E: Seismic Load Calculations

Executive Summary

Design concepts, site conditions, and building characteristics are explored in the following pages of Technical Report I. Technical Report I encompasses analysis of the Largo Medical Office Building's (LMOD) structure and comparisons between the original design and thesis spot checks. Studying the facility's use and design intent allowed assumptions concerning the loads and possible changes as the facility ages.


Systems included in the total gravity loads are: floor and flooring system, framing system, and building envelope. The typical bay utilized is 33'-0" x 33'-0", where the beams are typically spaced 8'-3" and joists are spaced 5'-6". Criteria for determining gravity system adequacy are bending capacity and deflection adherence to serviceability. Results showed that decks and girders are adequate but there slight discrepancies with the original joist, beams, and columns. Joists, beams, and columns have a max discrepancy of 14 percent; which can stem from vibration requirements, live load reductions, or use of predominant sections. Due to the lack of available information member weight comparison was no achieved, but member depths were compared.

Method 2 and Equivalent Lateral Load procedures were used to determine the wind and seismic loads respectively. The building's shape, roof heights, and gust factors were simplified. The lack of access to the original wind and seismic loads is responsible no comparisons with the spot check. It was determined that the base shear is only 1.4 percent of the effective building weight. As a result, the wind load in the North/South direction is the controlling lateral load case. Base shear and total overturning moment, for wind loading in the North/South direction, are 1077.9 kips and 555209 kip-ft respectively. Seismic loading produced a base shear of 314.6 kips and an overturning moment of 19507.5 kip-ft.

Included in the Appendix are all the gravity, wind, and seismic load calculations; as well as plans of typical building features.

Building Overview

Largo Medical Office Building (LMOB) is an expansion of the Largo Medical Center complex. Designed in 2007 and completed in 2009, LMOB is managed and constructed by The Greenfield Group. Located in Largo, Florida the six story facility was designed to house improved and centralized patient check-in area. The 155,000 ft² facility also houses office space for future tenants, as well as screening and diagnostic equipment.

Patient privacy is a major concern for facilities housing medical related activities. Oliver, Glidden, Spina & Partners answered this by clustering the screening and diagnostic spaces close to the dressing areas (Figure 1.1). The architect went a step further, to preserve privacy by compartmentalizing the building's interior.

LMOB is a 105' tall, steel framed facility with specially reinforced concrete shear walls to resist lateral loads. The shear walls rest on top of strip footings which are at least 27" below grade (Figure 1.2). LMOB's envelope consists of 3-ply bituminous waterproofing with insulating concrete for the roof; impact resistant glazing and reinforced CMU for the façade.

Structural System

Largo Medical Office Building is a 105' tall and 155,000 ft² facility which utilizes specially reinforced concrete shear walls and a steel frame.

Concerns about the structural system arose, after looking at the available plans. These concerns include:

- 1. Effects of drain placement on the rain load
- 2. Wind loading on the overhang (Figure 2.1)
- 3. Lack of information due to incomplete drawing set
 - Soil profile
 - Structural member sizes
 - Actual design assumptions and loads

Due to the lack of information the list of design codes, structural material, and some system details are incomplete. The uncertainty also generated numerous assumptions were made. Assumptions are highlighted in red lettering.

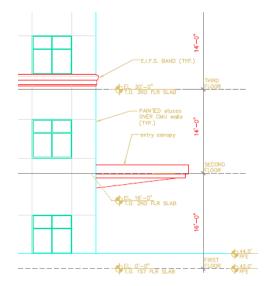
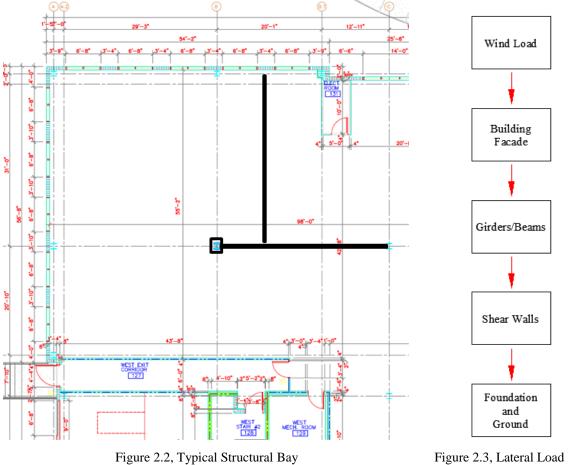


Figure 2.1, Overhang Source: Oliver, Glidden, Spina & Partners

Design Codes

Structural engineer consulting firm, McCarthy and Associates, designed the building to comply with the following codes and standards:

- 1. 2004 Florida Building Code (FBC)
 - Adoption of the 2003 International Building Code (IBC)
- 2. 13th Edition AISC Steel Manual
- 3. Design Manual for Floor and Roof Decks by Steel Deck Institute (SDI)
- 4. ACI 318-05


Codes and standards used for thesis are as follows:

- 1. 2009 International Building Code (IBC)
- 2. ASCE 7-05
- 3. 14th Edition AISC Steel Manual
- 4. 2008 Vulcraft Decking Manual
- 5. 2007 Vulcraft Steel Joists and Joist Girders Manual
- 6. ACI 318-08

Structural Materials Used

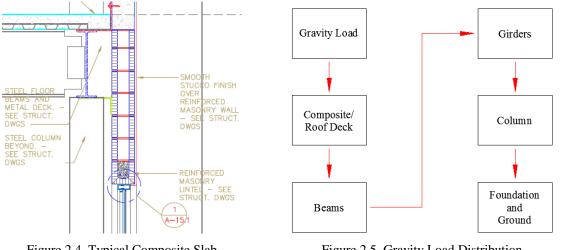
Table 2.1, List of Structural Materials		
	Steel	
W-Shapes	ASTM A992 Gr. 50	
Angles	ASTM A36	
Plates	ASTM A36	
Reinforcing Bars	ASTM A615	
Concrete		
Footings	3000 psi	
Slab-on-Grade	3000 psi	
Floor Slab	3000 psi	

Framing & Lateral System

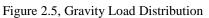
Source: Oliver, Glidden, Spina & Partners

Figure 2.3, Lateral Load Path

The steel frame is organized in the usual rectilinear pattern. There are only slight variations to the bay sizes, but the most typical is 33'-0" x 33'-0" (Figure 2.2). Please refer to Appendix A for typical plans and elevations. Girders primarily span in the East/West (longitudinal) direction. The only locations where girders are orientated differently include: the overhang above the lobby entrance and the loading dock area. It is assumed that the columns, girders, and beams are fastened together by bearing bolts. As a result, the steel frame only carries gravity loads.

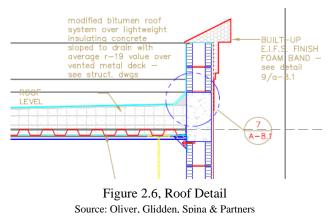

To deal with the lateral load, specially reinforced shear walls are used. The shear walls help the facility resist wind from the North/South and East/West direction. From the drawings it appears that the shear walls are positioned around the emergency stairwells and the two elevator cores. Typical shear walls span from the ground floor level to the primary roof (86' above ground floor level), highlighted black in Figure 2.2. Only the east emergency stairwell has a greater span due to the need for a direct access to roof level from the interior. Lateral load distribution path is demonstrated in Figure 2.3.

In lieu of using shear walls for the lateral system, brace frames and moment frames could be utilized. There are advantages and drawbacks to each lateral system, see Table 2.2 for a comparison of the systems.


Table 2.2, Comparison of Lateral Systems			
System	Shear Walls	Brace Frames	Moment Frames
Lateral Resistance Mechanism	Wall Mass and Solidity	Elongation of Brace	Rigid Connection
Member Size	Large	Small	Large
Footprint and Space Flexibility	Mid	Mid	Small
Weight	Heavy	Light	Mid
Vibration Dampening	High	Low	Low
Cost	High - due to labor	Low	High - due to connection quality control and fastening system

From comparing the various lateral systems with the building's primary function, it appears that the original decision to use shear walls is logical. Throughout the lifetime of the facility will house various tenants with different interior preferences, space flexibility is a significant concern. Both the shear walls and moment frames satisfy the space flexibility criteria. Drift is another concern when evaluating for the optimum lateral system. Greater amounts of drift increases the complexity of joining and fastening the building façade; which in turn leaves room for inadequate construction and rainwater leakage. Shear walls and brace frames are fairly stiff systems which results in reduced story drift when compared to moment frames. In addition the fire rating and safe emergency egress is an equally important criteria. Steel structures require significantly greater fire proofing, in concrete the cover is usually increased and is less labor intensive. Regional preference also plays a role in choosing a lateral system. In the southern U.S. concrete is the predominant building material, due to the lack of vital ingredients for steel production and steel labor base. As a result, lateral systems requiring special connection methods must be ruled out, such as moment frames.

Flooring System


In general, the structural flooring system is primarily a 5" thick composite slab (Figure 2.4). On all floor levels, except for the ground, the composite slab spans 8'-3". Gravity load distribution path can be followed in Figure 2.5. To satisfy the 2-hour fire rating defined by the FBC, it is likely that the floor assembly received a sprayed cementitous fireproofing. Exposed 2" composite deck with 3" of normal weight (NW) topping only has a 1.5-hour rating, per 2008 Vulcraft Decking Manual.

Hollow core planks and post-tension (pt) slabs are alternatives to the composite slab. PT-slabs do have an advantage in having a thin structural floor, thus allowing greater number of floors when compared to an equally high steel structure. Echoing the frame and lateral system, structural systems for office facilities should allow flexibility in partition and opening placement. Tensioned cables in pt-slabs prevent modification of the slab, like putting an opening into the floor, without first de-stressing the cables and temporary support the floor strip. On the other hand, hollow core planks don't hinder future floor openings. Though pt-slabs aren't easily modified once formed, the system has the advantage in having the thinnest structural floor system. This is advantageous for cities with height limitations since pt-slabs allow greater numbers of floors when compared to an equally high steel structure. In terms of quality control, both pt-slabs and composite slab concrete is typically cast in the field. The results of concrete cast in the field are mix inconsistency and weather induced strength variations. Hollow core planks doesn't have strength inconsistency problems, other than the typical 2" toping.

Roof System

LMOB has three roof levels: main roof, east emergency stairwell roof, and the overhang over the main entrance. There is only one roof type for all three roof levels are the same, consisting of a 3-ply bituminous waterproofing applied over the insulated castin-place concrete (Figure 2.6). To ensure adequate rainwater drainage, the insulated

cast-in-place concrete is sloped ¹/₄" for every 12" horizontal.

The insulated cast-in-place concrete was used in-lieu of rigid insulation with stone ballast. One reason is that the facility is in a hurricane zone. What it means is, loose material can potentially become airborne projectiles and cause damage when there is a hurricane. The insulated concrete has sufficient mass to resist becoming airborne. In addition, the added mass counters the uplift wind force.

Gravity Loads

Dead, live, rain, and snow loads were calculated for verification of the gravity system. ASCE 7-05 was utilized to factor the loads, using the LRFD method, to determine the size gravity members and check adequacy of actual system. Figure 2.2 shows the typical members, highlighted, which were checked.

Due to the lack of sufficient information, stemming from incomplete drawing set and specifications, a direct comparison of member sizes and design loads was not achieved. Instead actual member sizes were taken by measuring the member depth on the CAD architectural files.

Gravity load and member size calculations can be referenced in Appendix A and Appendix C, respectively.

Dead Loads

Before any dead load calculations were performed, quantity takeoffs and research in material weight were implemented. Take-offs was organized by floor level, which allowed ease of future analysis and design of alternate structural systems. The division by floor level has flexibility built in, where changes in materials can be easily tracked without having to decipher the entire building load equation. Items included in the take offs are: slab concrete volume, floor finish areas, areas of roofing layers/components, volume and area of façade components. See Table 3.1 and Table 3.2 for the material weights and total un-factored dead load by floor level.

Table 3.1, Weight of Building Materials		
Material	Weight	Reference
Normal-Weight (NW) Concrete	150 lb/ft^3	AISC 14 th Edition – Table 17-13
Light-Weight (LW) Concrete	113 lb/ft^3	Arch. Graphics Standards 11 Edition
Vinyl Composition Tile (VCT)	1.33 lb/ft^2	Arch. Graphics Standards 11 Edition
Ceramic/Porcelain Tile	10 lb/ft^2	AISC 14 th Edition – Table 17-13
3-Ply Roofing	1 lb/ft^2	AISC 14 th Edition – Table 17-13
0.8" Laminated Glass	8.2 lb/ft^2	
MEP	15 lb/ft^2	

Table 3.2, Unfactored Dead Load	
Floor Level	Load (kip)
Ground	2425.2
1	3325.7
2	3289.7
3	3289.7
4	3289.7
5	3289.7
Roof	3248.9

Once material quantities and material weight were determined, floor weight was determined. Items not included in the floor weight are the metal decking, joists, and structural steel members. Only after sizing the metal decking, joists, and structural steel members were the items included in the floor weight. A collateral load, of 5 lb/ft^2 , was included in the dead load to account for unforeseen items.

Assumptions were made to accelerate and simplify the take-offs and load determination. The assumptions are as follows:

- 1. Metal deck has equal rib volume
- 2. All beams are identical to the beam in the typical bay
- 3. All girders identical to the girder in the typical bay
- 4. Glazing and concrete are the only façade materials
- 5. All floors except for the roof use the same type of concrete

Live Loads

LMOB is classified as a type B occupancy, by the 2009 IBC. The outcome of the classification is the use of office live loads. The other live load used to analyze the gravity system is associated with emergency egress. Due to the lack of access to the actual live loads used by the structural consultant, the 2003 IBC live loads were compared to the ASCE 7-05 live loads. Comparison of the live loads is on Table 3.3.

Tab	le 3.3, Live Load Comparison	
Description	2003 IBC	ASCE 7-05
Stairs	100 lb/ft^2	100 lb/ft^2
Lobby & First Floor Corridor	100 lb/ft^2	100 lb/ft^2
Corridors Above First Floor	80 lb/ft^2	80 lb/ft^2
Ordinary Flat Roofs	To Be Calculated	20 lb/ft^2
Partitions	20 lb/ft^2	15 lb/ft^2

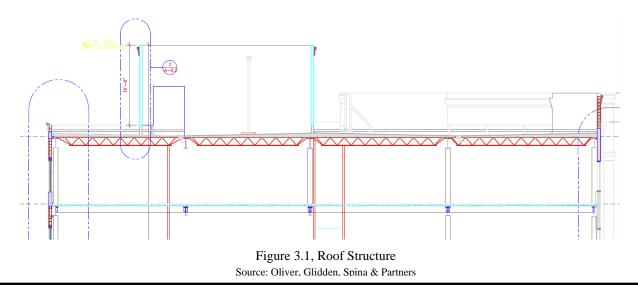
The option to use live load reductions was not taken up. Primary reason is that there is a likelihood that the busy hospital will expand its use of facility. Already the hospital occupies 39700 ft^2 of LMOB and has added a parking garage to accommodate additional patients. Another reason, it is likely that the facility will see new equipment, un-foreseen by the designers, in the future.

Table 3.4, Unfactored Live Load	
Floor Level	Load (kip)
Ground	2313.6
1	2001.7
2	2103.9
3	2103.9

4	2103.9
5	2103.9
Roof	528.8

Like the dead load calculations, live loads are broken down by floor level (Table 3.4).

Rain & Snow Loads


Location of LMOB was the deciding factor in whether rain or snow loads controlled. Being that the facility is in Largo, Florida; Figure 7-1 in ASCE 7-05 indicates that the ground snow load is zero. The result is no snow roof loads. Rain load was determined through the use of ASCE 7-05 and the International Plumbing Code (IPC). A ponding instability investigation was not required by ASCE 7-05, because the roof slope is a 1/4" rise for every 12" horizontal. Thus there was no study of ponding potential on the roof.

The hourly rain rate for Largo, Florida wasn't in the standards; the closest city's hourly rain rate was used. Tampa, Florida is the closest city to Largo, Florida. It was determined that the rain load is greater than the live roof load. In many calculations, the rain load (27.89 lb/ft^2) substituted the live roof load (20 lb/ft^2).

Gravity Spot Checks

Deck & Joist

Determining the building weight was the primary reason to size the deck and joist. All decks and joist shall use of cementitious fire protection, to achieve a 2-hour fire rating required by the FBC. There were only two assumptions made concerning decks; as follows: the deck has equal rib sizes, and all decks are 3 spans. Figure 3.1 and 3.2 shows the deck and joist placement.

Rain and dead load was used to size the metal roof deck instead of recommended the roof live and dead load. The 27.89 lb/ft² rain load is greater than 20 lb/ft² live roof load. From the spot check, the original 1.5" thick metal roof deck spanning 5'-6" is sufficient to resist the superimposed rain and dead load.

The only deviation with the original deck and joist design, appears to be the joist. The spot check showed that a 22K6 joist, also the lightest, is required to support the rain and dead load. Depth of the designed joist is 20" deep, this is a 10 percent difference with the spot check. The difference can be due to a number of factors:

- 1. Actual rainfall rate could be smaller than the substitute (Tampa, Florida)
- 2. Use of the prescribed live roof load instead of the rain load
- 3. Selection of heavier member but with less depth

See Table 3.5 for comparison of the decks and joists used in the original design and spot check.

Table 3.5, Comparison of Original Decks and Joist with Spot Check		st with Spot Check
Component	Original	Spot Check
Roof Deck	1.5B	1.5B24
Floor Deck	2VLI	2VLI22
Roof Joist	20" Depth	22K6

Beam & Girder

Beams and girders spanning the largest typical bay, 33'-0"x33'-0", were used for the floor system spot check. In addition to spot checking, the calculated size of the beams and girders were factored into the weight of the building. The members were evaluated for flexural capacity and deflection. It was assumed that the girders use shear studs to have composite action and that shear is completely transferred from the composite slab to the girder. Comparison of the typical beams and girders can be referenced in Table 3.6.

Table 3.6, Comparis	on of Original Beams and Girc	lers with Spot Check
Component	Original	Spot Check
Beam	W16	W14x74
Girder	W24	W24x76

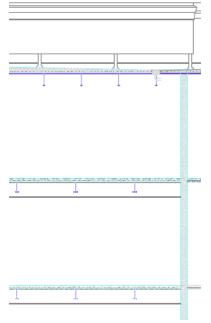


Figure 3.3, Joist and Beam Offsets Source: Oliver, Glidden, Spina & Partners

There are slight differences between the original beam sizes. The difference is approximately 14 percent, some possible explanations for the difference are:

- 1. Vibration criteria not evaluated in the spot check
- 2. Use of economical and predominate sections
- 3. Greater gravity load due to additional mechanical equipment

Column

Spot check calculations of the typical column, at the intersection of lines B and 2, were implemented once the other structural steel members were sized according to the ASCE 7-05 loads. Column, B-2, was selected because it is an interior column not part of the lateral system. As a result it does not experience lateral loads, as the exterior columns. In terms of bracing, beams and girders prevent the column from having an un-braced length greater than 16'.

Due to the existence of the specially reinforced shear walls, it was assumed that the typical column is pin base. Also, it was assumed that the column did not change size to suit the changing gravity loads. Instead all columns are the same size, to ensure ease of construction and reduce complex column splice connections.

Neither the live load nor live roof load were reduced. All floor levels, other than the roof, were loaded with 80 lb/ft^2 live load. The spot check resulted in W14x120 as the lightest column size to resist gravity loads. McCarthy Associates used a W12 column, the difference is 14%. Reason for a slightly smaller original column can be attributed to:

- 1. Smaller live load assumption due to either different load criteria or use of live load reduction
- 2. Use of predominant sections

Lateral Loads

Wind Load

Method 2 in Chapter 6 of ASCE 7-05 was used to determine the Main Wind Force Resisting System (MWFRS) and wind load on the Components & Cladding (CCL). Story forces and overturning moments were determined by calculating the wind pressures and loads. Assumptions were made to simplify method 2, as follows:

- 1. Ignore the canopy
- 2. Due to multiple roof levels, that average roof elevation 95'-6" was utilized
- 3. Gust factor of one was used, since the calculated gust factor is 0.89 and 0.91 (depending on wind orientation)
- 4. Internal pressurization is unlikely due to use of impact resistant glazing
- 5. Type III for importance category
- 6. Flexible building

A majority of the wind calculations were done by hand. Excel was only used to determine the total overturning moment and the wind load distribution at each story. All wind calculations and site characteristics are available for reference in Appendix D. Shown below in Figure 4.1, 4.2, 4.3, and 4.4 is the MWFRS wind distribution and story shear.

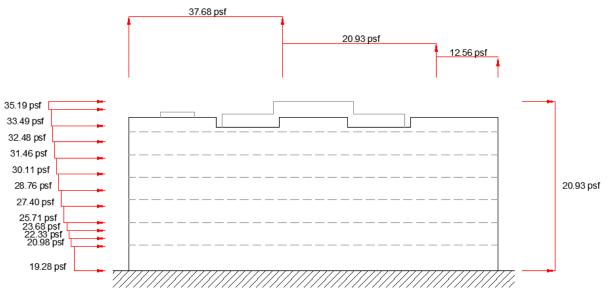


Figure 4.1, MWFRS East/West Wind Load Distribution

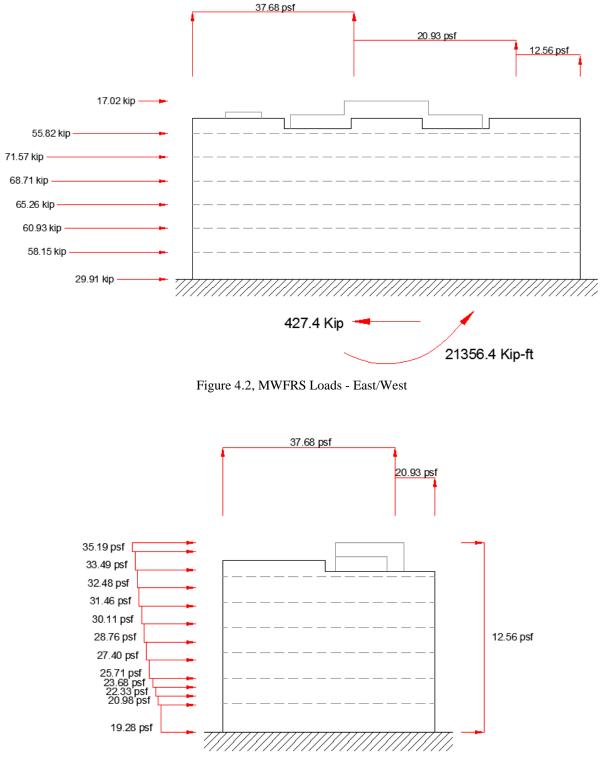


Figure 4.3, MWFRS North/South Wind Load Distribution

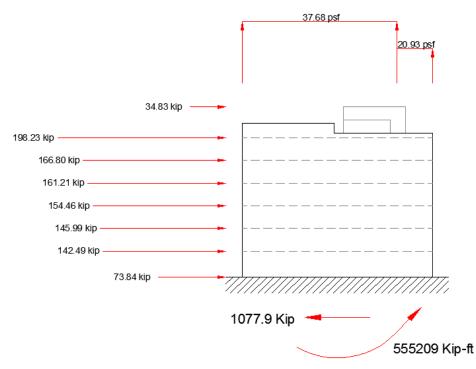


Figure 4.4, MWFRS Loads - North/South

From the wind analysis, the MWFRS loads due to wind in the North/South direction controls over the East/West direction. MWFRS loads on the North/South sides are more than two times that of the East/West sides. The higher wind loads can be attributed to greater façade area of the North/South building sides.

Seismic Load

Equivalent Lateral Force method was used to determine the seismic loads on LMOB. The seismic load, an inertia load, is caused by ground acceleration. Seismic load transfers from the floor diaphragms to the shear walls. The shear walls enclose the emergency stairwells and elevator core, an illustration of the shear wall locations are highlighted black in Figure 4.5. No seismic loads were transferred to the top roof, at 105', due to the lack seismically designed masonry structure supporting the diaphragms (Figure 4.6).

The fundamental period of the facility is 0.66 seconds, per ASCE 7-05 equation 12.8-9. Using ASCE 7-05 it was discovered that the facility doesn't have to resist significant seismic forces, approximately 314.6 kip. This translates to 1.4% of the effective building weight. Live, dead, and rain loads determined previously in were used to calculate the effective building weight. Table 4.1, describes the effective building weight by floor level. Torsion irregularity of the facility was ignored in the seismic analysis. For the seismic load diagram, please see Figure 4.7.

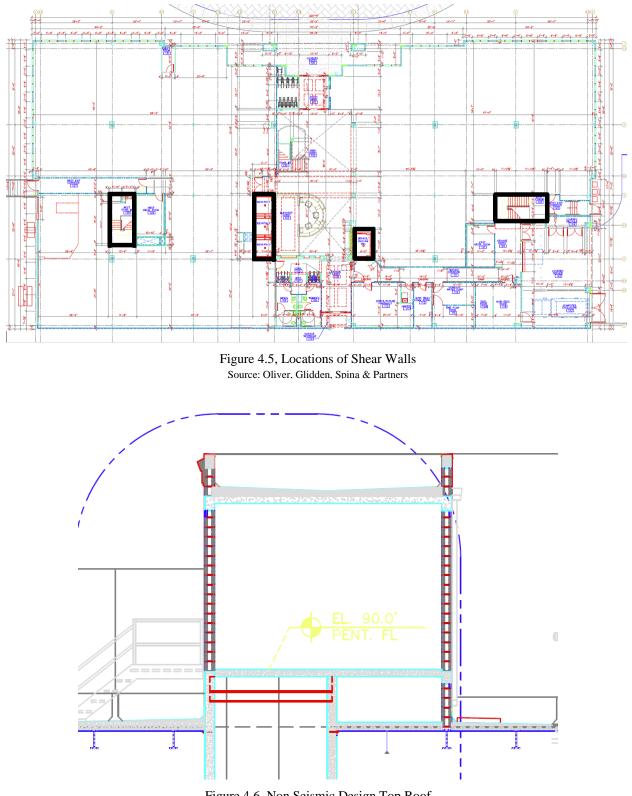


Figure 4.6, Non Seismic Design Top Roof Source: Oliver, Glidden, Spina & Partners

Table 4.1, Effective Weight	
Floor Level	Level Effected Weight (kip)
Ground	0
1	3826.1
2	3891.6
3	3836.6
4	3770.4
5	3764.2
Roof	3381.1

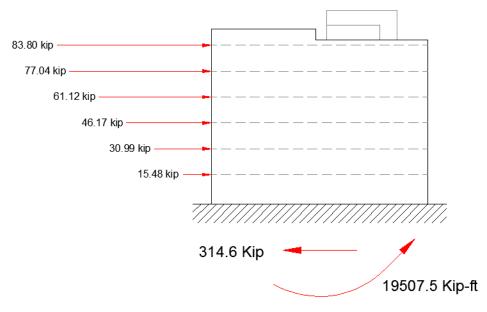
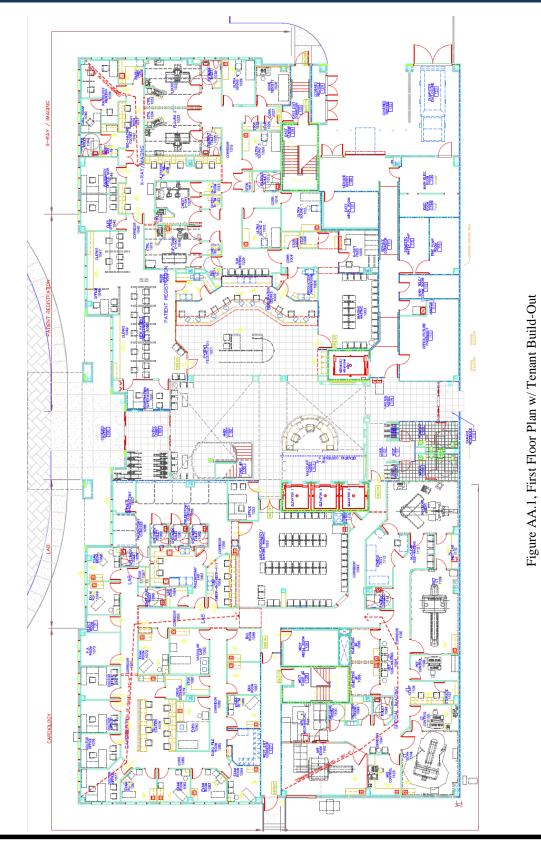


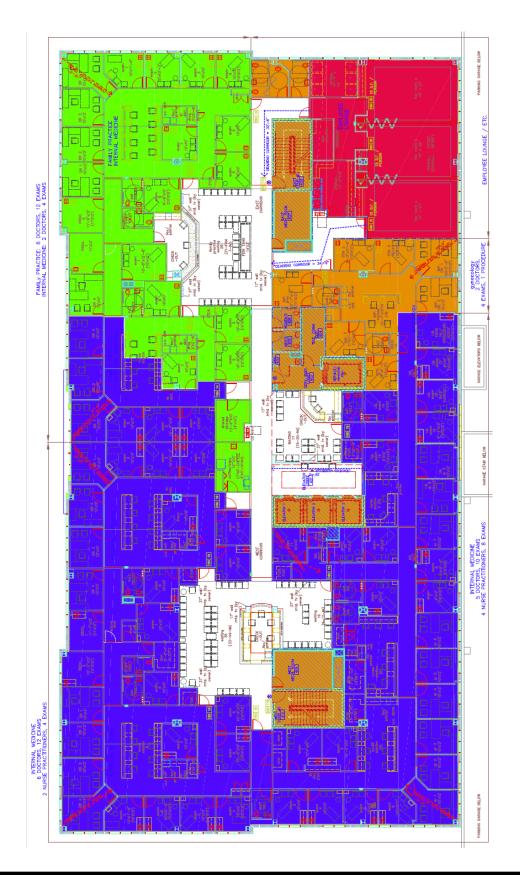
Figure 4.7, Seismic Loads Source: Oliver, Glidden, Spina & Partners

Conclusion

Technical Report I studies the structural system of the Largo Medical Office Building (LMOB) through analysis of the available plans, and design load discussions. Many simplifying assumptions were made; primarily concerning the facility's shape and structural components, as well as to satisfy the ASCE 7-05 criteria.

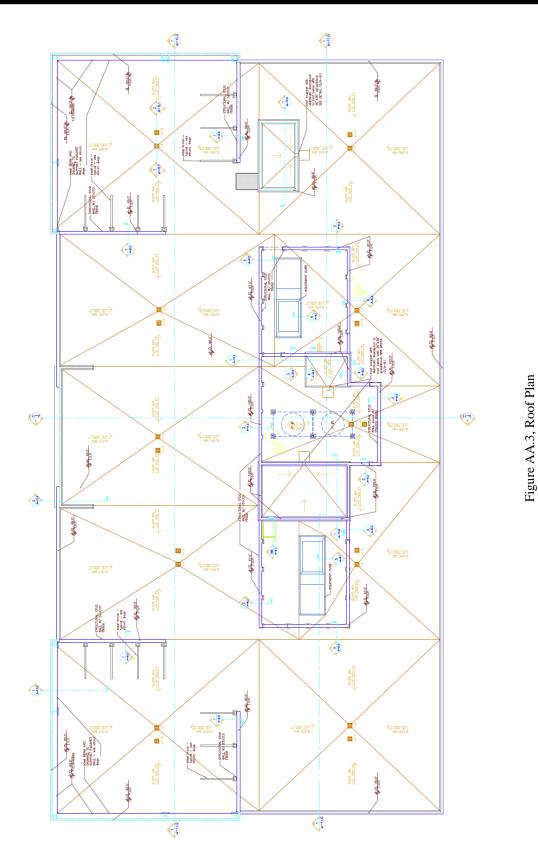

Spot check for the current gravity system, using the AISC 14th Edition Steel Manual, showed that decks and girders are adequate. It was discovered that there are slight discrepancies with the original joist, beams, and columns. The maximum difference is 14%, when comparing the depth of the members. It is likely that the small difference is caused by or a combination of vibration requirement, live load reductions, or use of predominant sections. Member weight comparison was not implemented, due to the lack of information in the available drawings

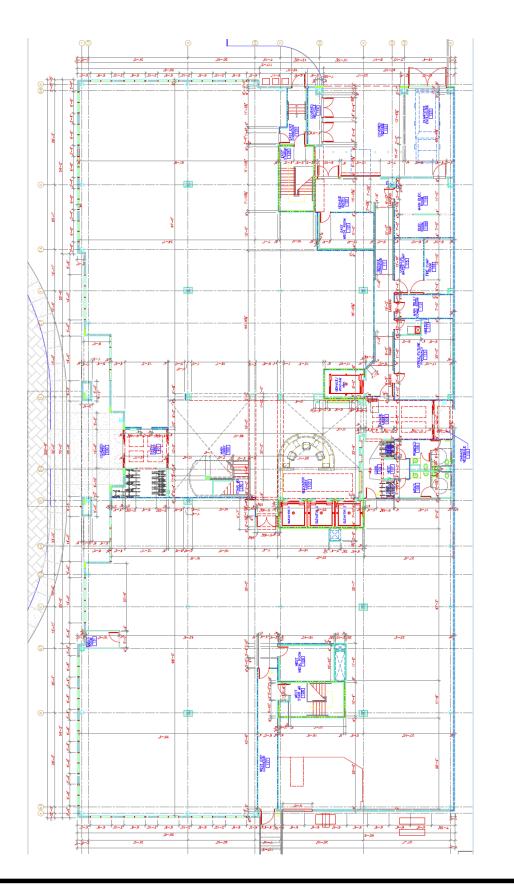
Much of the dead, live, rain and snow loads were determined through the use of ASCE 7-05. These gravity loads along with the gravity member weights were used to analyze LMOB for seismic loads. As it turned out the equivalent lateral system is only 1.4 percent of the effective building weight. Unfortunately, comparison with the original seismic load was not possible, due to lack of information on the available drawings. This was the same case for the wind analysis.

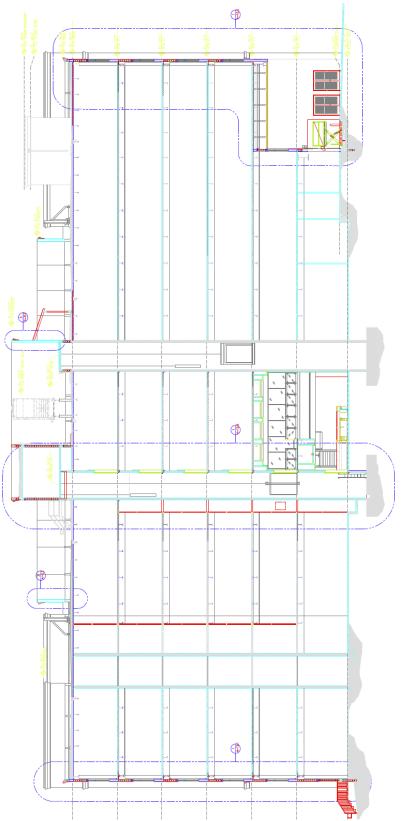

After analysis of both the wind and seismic loads, it was found that the wind loading in the North/South direction is the controlling lateral scenario. Wind loading in the North/South direction dominates in base shear and overturning component. Due to the Florida's low seismic activity but high hurricane risk it is logical that the facility experience high wind loads when compared to the seismic load.

Source: Oliver, Glidden, Spina & Partners

Appendix A: Floor Plans & Elevation

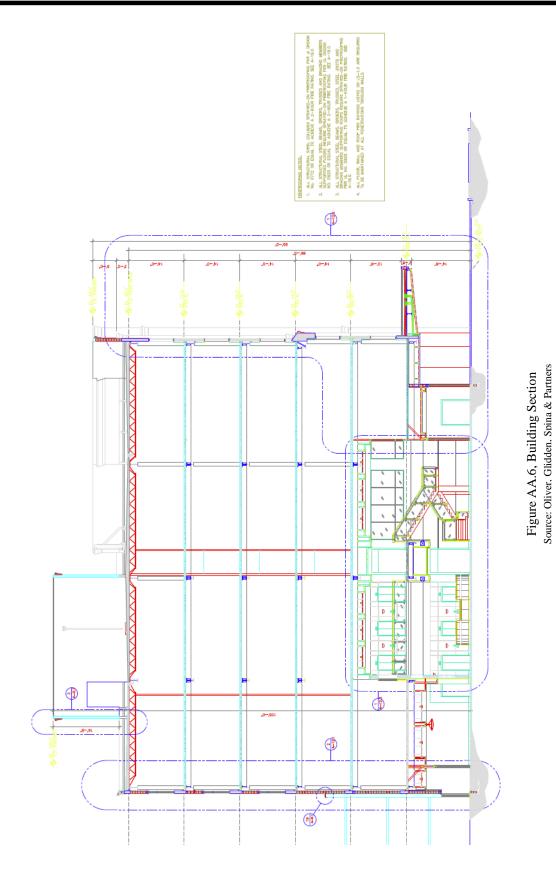

Page **20** of **45**





Page **21** of **45**

Source: Oliver, Glidden, Spina & Partners



Thaison Nguyen | Structural

Page **24** of **45**

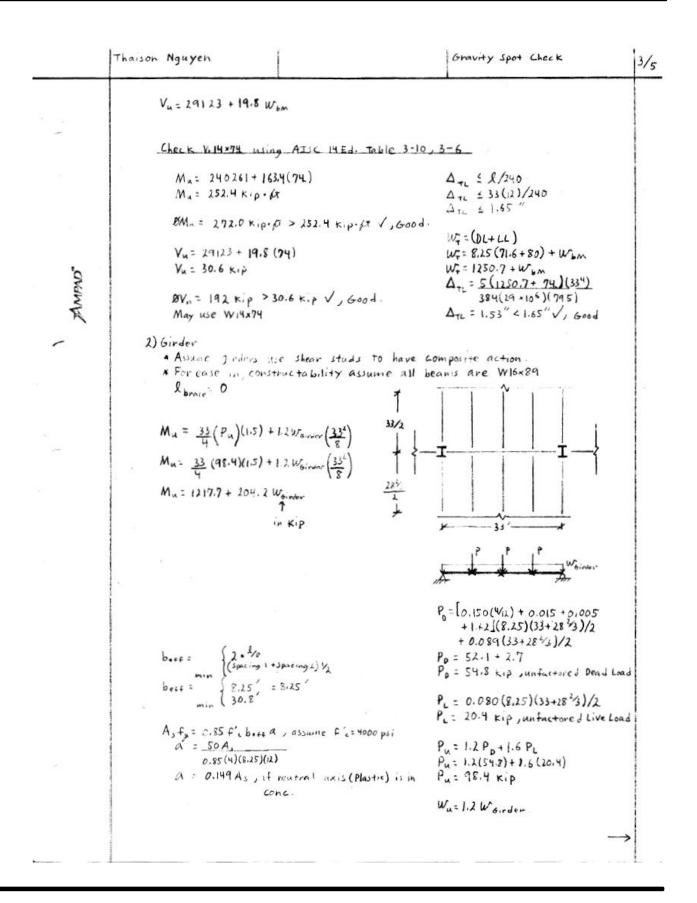
Page **25** of **45**

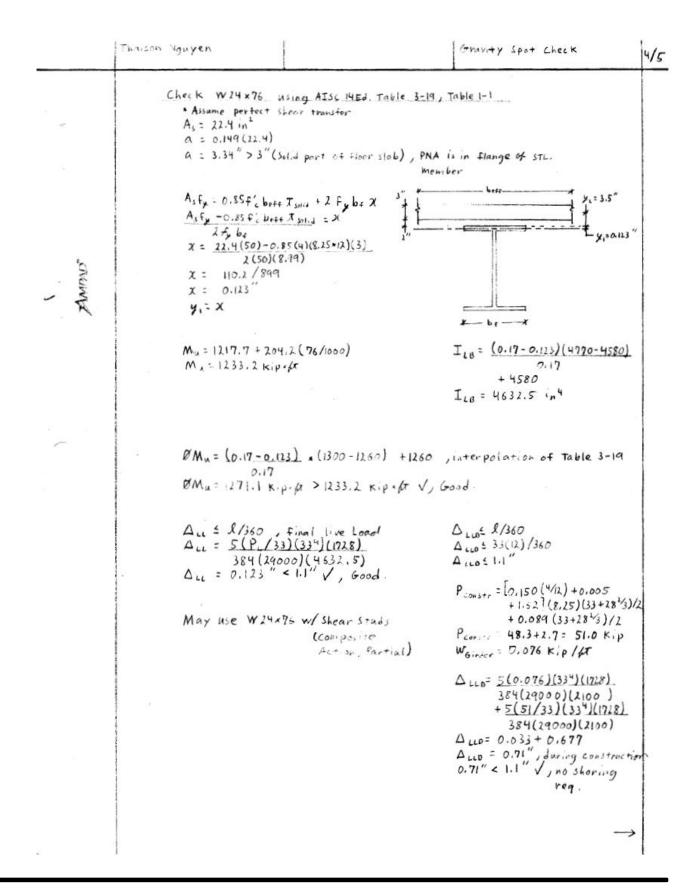
Appendix B: Load Determination Dead, Live, Rain

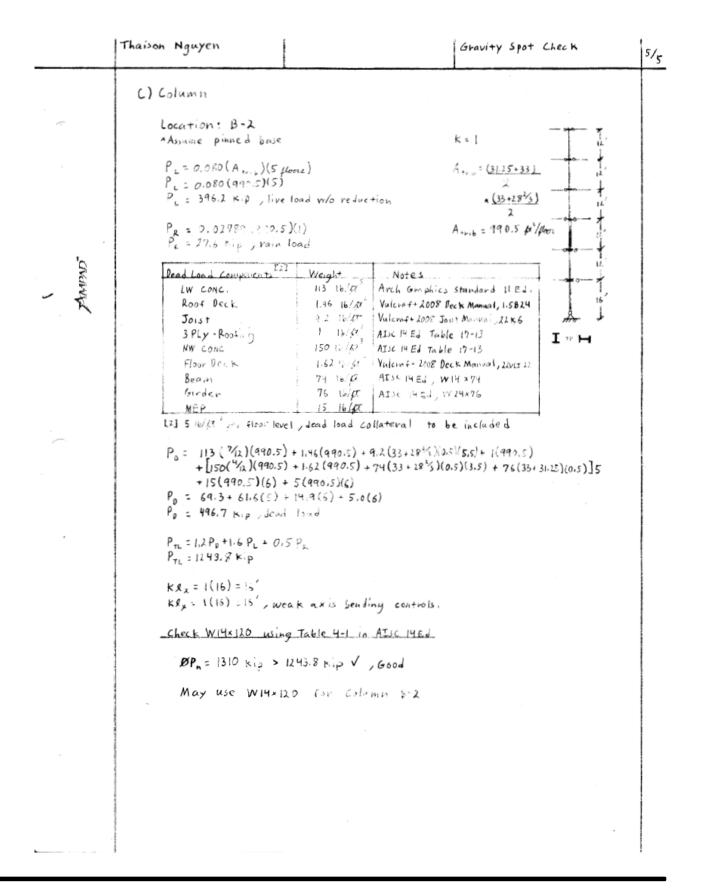
	Thaison Ngayen Load Determination - DEAD, LIVE 1/5 RAIN
-	Floor Level $A_{gross}(4\tau^{L}) = A_{risplaing}(4^{L}) = A_{stairs}(4\tau^{L})$ 0 24153.00 243.00 724.00 1 26440.00 1571.00 609.00 2 26440.00 243.00 609.00 3 26440.00 243.00 609.00 4 26440.00 293.00 509.00
awant	$ \begin{array}{c cccccccccccccccccccccccccccccccccc$
K	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
\sim	[3] Roof has partitions Enclosing Mechanical equipment and stairwell. ** 5 16/ft ² dead load collateral : Material Weight Notes NW CONC 150 16/ft ² AISC 14EJ. Table 17-13 LW. CONC 113 16/ft ² Arch. Gimphics Standards 11Ed.
	VCT 1.33 $1b/\beta t^3$ Arch Graphics Standards 11Ed. Ceramic / 10 $1b/\beta t^3$ Arch Graphics Standards 11Ed. Porcelain Tile 3 Ply Roofing 1 $1b/\beta t^4$ AISC 14Ed. Table 17-13 Laminated 8.2 $1b/\beta t^4$
,	MEP Partitions 15 10/ft ASCE 7-05 4.2.2 A) Floor / Deck Thickness 1) Level: 0
	Tfloor = 4", solid reinf. conc. 2) Level: 1→5
	$d_{deck} = 2''$, assume metal deck has equal size corregations $f_{floor} = 5''$ $T_{floor,eq} = T_{floor} - \frac{d_{dec}}{2} = 4''$, use to determine conc. Weight

	Thaison Nguyen		Load Determination - DEAD, LIVE 2/5 RAIN
	$\begin{aligned} \mathcal{T}_{\text{floor}} &= 10^{-1/8} \stackrel{\text{"}}{\longrightarrow} 3\\ \mathcal{T}_{\text{floor}}, \text{""} &= (10^{-1/8} + 3^{-1/4})\\ \mathcal{T}_{\text{floor}}, \text{""} &= 7^{-1} \end{aligned}$	metal deck has equal sit $\frac{11}{16}$ $\frac{1}{2}$ 1	
constant	1) Level: 0 $DL = 0.150(T_{stars})(A_{a})$	nooss) + 0.015(Agross - Anopening 3) + 0.015(24153 - 293 - 724) +	- A stars) + 0.005 (Agross)
	+ 0.00	(I floor, eq)(Agross - Afloppening) + 05(Agross) 440 - 1571) + 0.015(26440 - 157 10)	
	+ 0.005 (A gro	440 - 243) + D. 015 (26440 - 243·	
	+0.005 (A	(Agros:)+0.015(Agross = 0.20)) 6440)+0.015(26440)(0.20)+0.00	
			>

```
Load Determination - DEAD, LIVE 3/5
        Thaush Nguyen
                                                                                                             RAIN
             C) Dead Weight of Flooring
                 Floor Level
                                                                                        2 or 3 or 4 or 5
                 Flooring
                                   VCT
                                                                                        VET
                                              Ceramic
                                                             VCT
                                                                         Cenamic
                                                                                                      Ceramis
                                1410
                                             2841
                                                            531
                                                                           653
               Area (fr')
                                                                                       531
                                                                                                      339
                * Other areas have exposed conc.
                1) Level: 0
                    DL = 1.33(1410) + 10(2841) = 30.3 Kip
                2) Level: 1
"anampa
                   DL = 1.33 (531) + 10 (653) = 7.2 Kip
                3) Level: 2 > 5
                   DL=1.3(531)+10(339) = 4.1 Kip/floor level
             d) Dead Weight of Facade Envelope (by story)
                 i) Story: 1
                     \begin{aligned} & \text{DL} = 0.150 \left( A_{\text{facility}} - A_{\text{glating}} \right) + 0.0082 \left( A_{\text{glating}} \right) \\ & \text{DL} = 0.150 \left( 11093.33 - 1588.00 \right) + 0.0062 \left( 1588.00 \right) \end{aligned} 
                    DL = 1438.8 Kip
                 2) Story: 2
                    DL = 0.150(9706.67-1920.20) + 0.0082(1920.20)
                    DL = 1183.7 Kip
                 3) story: 3
                    DL = 0.150 (9706.67 - 1846.20) + 0.0082 (1846.20)
                    DL = 1194.2 Kip
                 4) Story : 4
                    DL = 0.150 (9706.67-2681.60) + 0.0082 (2681.60)
                    DL = 1073.7 Kip
```

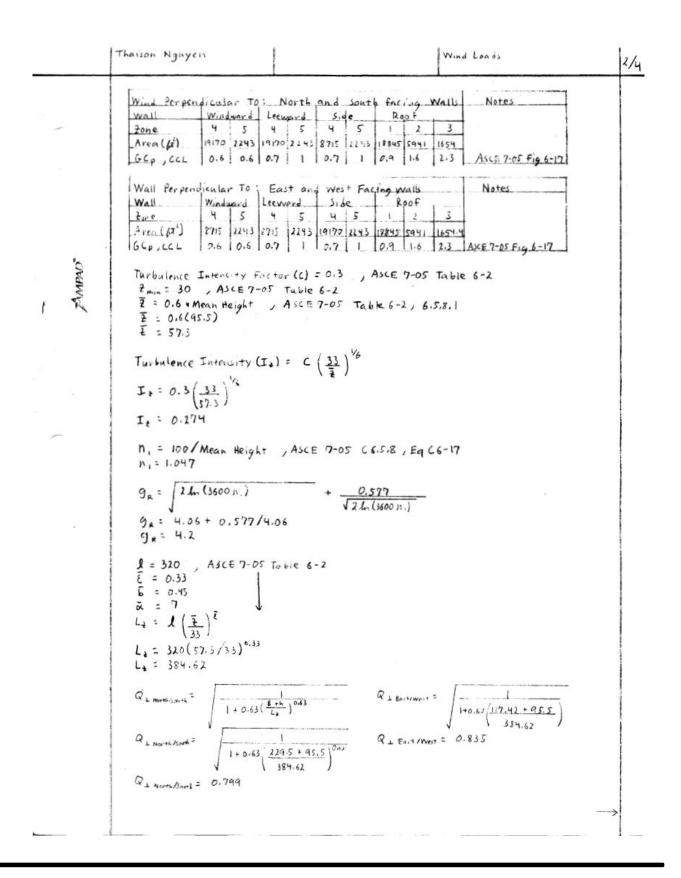

	Thaison Nauyen	Load Determination - DE Ri	AD , LIVE
	5) Story: 5		
~	DL = 0.150(9706.67 - 2780.40) + DL = 1061.7 Kip	0.0082 (2780.40)	
	6) story : 6		
	DL = 0.150 (9706.67-2783.40) +0. DL = 1061.3 Kip	0082 (2783.40)	
_ONAWA	?) Story : Roof		
T.	DL = 0.150(5079.00) DL = 761.85 Kip		
	e) Live Load W/o Live Load Reduction	7h	
_	Room Type Stairs Lobby & First Floor Corridor Corridor Above First Floor Ordinary Flat Roofs	oad (16/82) Notes 100 ASCE 7-05 Table 4-1 100 20 20	
	* Partitions : 15 16/pr2 , per Asc	E 7-05 4.2.2	
	1) Level : O		
	LL = 0.100 (Agross - A rioponing - LL = 0.100 (24153 - 293 - 724) + LL = 2313.6 Kip	A stairs) + 0,100 (A stairs) 0,100 (724)	
	2) Level : 1		
	LL = 0.080(26440 - 1571.00 - 60 LL = 2001.7 Kip	9,00)+0.100 (609.00)	
	3) Level : 2 = 5		
	LL = 0.080(26440-293.00-609. LL = 2103.9 Kip	00)+0.100(609.00)	
			\rightarrow


	Thasson Nguyen		Load Determination - DEAD, LIVE RAIN	5/5
	f) Rain Load Rainfall Rate(I):4.5	" our hour (100 year return	period); per International	
		Plumbing Code 2009 App (A) = 52 > 60.17 = 3128.7 (Q) = $0.0104(A)(I) = 146.42$	pendix B, ASCE7-05 C8.5 pen ASCE7-05 C8.5	
		3" 1.738", interpolation of		
"ONIMUT	$R = 5.2(d_{s} + d_{h})$ R = 5.2(3.63 + 1.738) $R = 27.89 1b/pr^{2} > (R_{c})$	of live load=20 16 ft)		
	tana.			


Appendix C: Gravity Load Calculations

	Thaison Ngayen	Gravity Spot Check
	Member Typical Typical Location Type Span (pr) Spacing(pr) Beam 33 8.25 BI->B2	L
	Girder 33 33 B2→C2 Joist 28.67 5.5 B1→B2	
	a) Roof and Floor Deck, Joists	
	Load combination : 1.2D+1.6L+0.5(L, or R	. or S)
OKINA	Roof Deck Floor Deck Joist (1) pan(p) 5.5 8.25 28.67	
MA	Spacing N/A N/A 5.5	
	[1] Assume 3 span decks	
	1) Roof Deck * Assume 2 hr fire rating.	
	Total Load (TL) = DL + LL + R TL = 79.9 + W_{Beck} + 27.98 TL = 107.9 16/ft ² + W_{Beck}	DL = 0.113 (6.25/2) + 0.015 + 0.001 + 0.005 + WDELK DL = 0.0799 Kip//cr + WDELK
	Check 1.5824 (asing Valcaft 2008 Manual)	DL = 79.9 16/4r + WDeck
	Max SDI Span = $5'-10'' > 5'-6'' \sqrt{,600d}$. Max Allowable Load = $128 \ \frac{1}{6} \frac{1}{7} \frac{1}{7}$ TL = 107.9 ± 1.46 TL = $109.4 \ \frac{1}{6} \frac{1}{7} \frac{1}{7} < 128 \ \frac{1}{6} \frac{1}{7} \frac{1}{7} \sqrt{,600d}$	* Since roof live load = $20.16/ft^+$ To smaller than Rain load (27.98 16/ft ⁺) and unlikelines of work performed on roof during rain \rightarrow Use Rain load
	Load Causing \$/120 = 43 +90 Load Causing \$/120 = 120 16/p2 > 109 4 16/p2 // Good	Plaster Ceiling
	*Un-protected dock is rated up to 2 hrs V, G. May use 1.5 B24	ood .
	2) Floor Deck Active 2hr fire rating	
	*Assume floor drek is composite type	
	LL = 100 16/ft, areas close to state.	
	Check 246122 using Valereft 2008 Menua Weight of deck = 1.62 16/07 Max SDI span = 8'-11" > 8'-3" V, Good	
	Max Superimposed Live Load = 153 16/62 >	> 100 10/4+ V, Good

We, comming = 611.2 16/ft > 609.6 16/ft J, Good LL capacity = [(29-25 67)(328-295) + 295] 36980 LL capacity = 611.8 16/ft > 27.89(5.5) 611.8 16/ft > 153.4 16/ft J, Good * Use spray applied fire resistive materials (ex. Cementitious or fiber) to achieve 2 hr. rating, per SJI May use 22K6 w/ spray applied fire resistive materials b) Beam, Girders Load Combination: 1.20+1.6L +0 = (L+ or R or S) *Assume beams and girders are pinned connected; A992 6+50 1) Beam,		Thasson Nguyen	Gravity Spot Check
3) $J_{0.015}$ $W_{12} = 1.2 \text{ bl} + 0.5 \text{ k}$ $W_{12} = 1.2 \text{ bl} / d^{-1} + 1.2 \text{ k} / 2 \text{ k}$ $W_{12} = 1.2 \text{ bl} / d^{-1} + 1.2 \text{ k} / 2 \text{ k}$ $W_{12} = 548.4 \text{ bl} / d^{-1} + 1.2 \text{ k} / 2 \text{ k}$ $W_{12} = 548.4 \text{ bl} / d^{-1} + 1.2 \text{ k} / 2 \text{ k}$ $W_{12} = 548.4 \text{ bl} / d^{-1} + 1.2 \text{ k} / 2 \text{ k}$ $W_{12} = 548.4 \text{ bl} / d^{-1} + 1.2 \text{ k} / 2 $			fire protection
$W_{u} = 1.2 \text{ DL} + 0.5 \text{ R}$ $W_{u} = 1.2 \text{ DL} + 0.5 \text{ R}$ $W_{u} = 1.2 \text{ DL} + 0.5 \text{ R}$ $W_{u} = 1.2 \text{ DL} + 0.5 \text{ R}$ $W_{u} = 1.2 \text{ DL} + 0.5 \text{ R}$ $W_{u} = 1.2 \text{ DL} + 0.5 \text{ R}$ $W_{u} = 1.2 \text{ DL} + 0.5 \text{ R}$ $W_{u} = 1.2 \text{ DL} + 0.5 \text{ R}$ $W_{u} = 1.2 \text{ DL} + 0.5 \text{ R}$ $W_{u} = 1.2 \text{ DL} + 0.5 \text{ R}$ $W_{u} = 1.2 \text{ DL} + 0.5 \text{ R}$ $W_{u} = 548.4 + 6.6 \text{ M}$ $W_{u} = 548.4 + 6.6 \text{ R}$ $W_{u} = 571.2 \text{ D}$ $W_{u} = 128.571 \text{ D}$ $W_{u} = 1765 \text{ H}$ $W_{u} = 128.571 \text{ D}$ $W_{u} = 1765 \text{ H}$ $W_{u} = 128.571 \text{ D}$ $W_{u} = 1765 \text{ H}$ $W_{u} = 128.571 \text{ D}$ $W_{u} = 1765 \text{ H}$ $W_{u} = 128.571 \text{ D}$ $W_{u} = 1765 \text{ H}$ $W_{u} = 128.571 \text{ D}$ $W_{u} = 1765 \text{ H}$ $W_{u} = 128.571 \text{ D}$ $W_{u} = 128.571 \text{ H}$ $W_{u} = 128.571 \text{ H}$ $W_{u} = 1$		May use 24LI22 w/ either cementit	ous or spray Fiber protection.
* Assume 2 hp fire rating $W_{12} \leq 548.4 + 6.6(32)$, $W_{20int} = 9.2 1k/\mu$ $W_{12} \leq 548.4 + 6.6(32)$, $W_{20int} = 9.2 1k/\mu$ $W_{12} \leq 548.4 + 6.6(32)$, $W_{20int} = 9.2 1k/\mu$ $W_{12} \leq 548.4 + 6.6(32)$, $W_{20int} = 9.2 1k/\mu$ $W_{12} \leq 548.4 + 6.6(32)$, $W_{20int} = 9.2 1k/\mu$ $W_{12} \leq 548.4 + 6.6(32)$, $W_{20int} = 9.2 1k/\mu$ $W_{12} \leq 248.6 7$ (540 - 597) + 597 $M_{12} \leq 153.4 1k/\mu \sqrt{3600d}$ * Use spray applied fire resistive materials (ex. Cementitious or fiber) to achieve 2 kr. rating , per SJT May use 21k6 w/ spray applied fire resistive materials b) Beam, Girders Load Combination: 1.2D + 1.6L + 0 r (L+ or R or S) * Assume beams and girders are pinned connected, A992 G+ 50 1) Beam $W_{12} = [1.2(D1) + 1.6(L1)] + spacing of km$ $W_{12} = [1.2(D1) + 1.6(L1)] + spacing of km$ $W_{12} = 17.6 1k/\mu^{4} + 1.2W_{km}$ $W_{12} = 17.6 1k/\mu^{4} + 1.2W_{km}$ $M_{12} = 0.150^{(W_{11})} + 0.015 + 0.005 + W_{12}$ $M_{12} = 80 1k/\mu^{4}$	'a	$W_{u} = 1.2 DL + 0.5 R$ $W_{u} = \left[1.2(71.5 + W_{30.51}) + 0.5(27.89) \right] 5.5$ $W_{u} = \left[99.8 \ 16/6^{4} + 1.2(J_{30.11}) \right] 5.5$	+ $W_{dec.}$ + W_{30irt} DL = 70 16/pt + 1.46+ W_{30irt} DL = 71.5 16/pt + W_{30irt}
$W_{u,commin} = (29-28.67)(540-597)+597$ $M_{u,commin} = (11-2 16/42 > 609.6 16/41 \sqrt{,600d}$ $W_{u,commin} = 611.2 16/42 > 609.6 16/41 \sqrt{,600d}$ $U_{commenty} = [(24-28.67)(328-295) + 295]^{36}%$ $U_{commenty} = 611.8 16/42 > 22.89(5.5)$ $611.8 16/42 > 153.4 16/42 \sqrt{,600d}$ * Use spray applied fire resistive materials (ex. Commentitions or fiber) to achieve 2 hr. rating , per SJT May use 22K6 w/ spray applied fire resistive materials b) Beam $W_{u} = [1.2(DL) + 1.6(LL)] * spacing of bM$ $W_{u} = [1.2(DL) + 1.6(LL)] *$	KINK	* Assume 2 hr. fire rating Wu = 548.9 + 6.6(9.2) , Wooint = 9.2 16/12	is smaller than Rain load $(27.89 \text{ ib/} pr^2)$ and unlikeliness of work performed on roof
$LL_{uparity} = 611.8 lb/ft > 22.89(5.5)$ $611.8 lb/ft > 153.4 lb/ft \sqrt{, 600d}$ $* Use spray applied fire resistive materials (ex. Cementitious or fiber) to achieve 2hr. rating , per SJI May use 21k6 w/ spray applied fire resistive materials b) Beam, Girders Load Combination: 1.2D + 1.6L + 0 t (L+ or R or S) *Assume beams and girders are pinned connected , A992 G+ 50 l) Beam UV_{u} = [1.2(DL) + 1.6(LL)] * Spacing of bm UL = 0.150(V(n) + 0.015 + 0.005 + W_{b} W_{u} : [1.2(n.6)+1.6(80)] * 8.25 + 1.2(W_{bm}) + W_{beck} W_{u} : 1765 \cdot 1b/ft + 1.2W_{bm} M_{u} = W_{u}g^{2}/g M_{u} = (1785 + 1.2W_{bm})(33^{2})/g M_{u} = W_{u}g/2$		Wy, capacing = (29-28.67) (340-597) + 597	△ ≤ \$/180, supporting Non Plaster
* Use spray applied fire resistive materials (ex. Comentitious or fiber) to achieve 2hr. rating , per SJI May use 22k6 w/ spray applied fire resistive materials b) Beam, Girders Load Combination: 1.20+1.6L +0 \subset (L+ or R or S) *Assume beams and girders are pinned connected, A992 G+ 50 1) Beam $W_u = [1.2(DL) + 1.6(LL)] * Spacing of bm W_u = [1.2(DL) + 1.6(LL) + 1.6(LL)] * Spacing of bm W_u = [1.2(DL) + 1.6(LL) + 1.6(LL)] * Spacing of bmW_u = [1.2(DL) + 1.6(LL) + 1.6(LL$	÷	LL composity = 611.8 16/12 > 27.89(5.5)	fo
*Assume beams and girders are pinned connected; A992 GF50 1) Beam $W_u = [1.2(DL) + 1.6(LL)] * spacing of bM W_u = [1.2(DL) + 1.6(B0)] * 8.25 + 1.2(W_{bm})W_u = 1765 \cdot 16/pt + 1.2W_{bm}M_u = W_u g^2/gM_u = (1765 + 1.2W_{bm})(33^2)/gM_u = 240251 + 163.4W_{bm}V_u = W_u g/2$		* Use spray applied fire resistive ma to achieve 2hr. rating , per SJI May use 22K6 w/ spray applied .	
1) Beam $W_{u} = [1.2(DL) + 1.6(LL)] * spacing of bM W_{u} = [1.2(DL) + 1.6(SO)] * 8.25 + 1.2(W_{bm})W_{u} = 1765 \cdot 16/gr + 1.2W_{bm}M_{u} = W_{u}g^{2}/gM_{u} = (17K5 + 1.2W_{bm})(33^{2})/gM_{u} = 240261 + 163.4W_{bm}V_{u} = W_{u}g/2$			
$V_{\mu} = W_{\mu} X/2$ $V_{\mu} = (1765 + 1.2 W_{\mu\nu})(33/2)$		1) Beam $W_{u} = [1.2(DL) + 1.6(LL)] * spacing of bM$ $W_{u} = [1.2(9L6)+1.6(80)] * 8.25 + 1.2(W_{bm})$ $W_{u} = 1765 \cdot 16/\beta + 1.2W_{bm}$ $M_{u} = W_{u}R^{2}/8$ $M_{u} = (17K5 + 1.2W_{bm})(33^{2})/8$ $M_{u} = 240261 + 163.4W_{bm}$	DL = 0.150(4/1) + 0.015+0.005+Wm + WBeck DL = 71.6 16.624 + Wm
		$V_{\mu} = W_{\mu} g/2$ $V_{\mu} = (1765 + 1.2 W_{\mu\nu})(33/2)$	



Appendix D: Wind Load Calculations

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
V = 30 mi/hr, Asceptor Figure 6-1 Component MWFRS CCL ¹¹ Notes. K, 0.85 0.85 Asceptor Table 6-4 L) Component and cladding Height (BT) Cost I: CCL Cost I: NWERS S15 07 0.57 Asceptor Table 6-4 L) Component and cladding Height (BT) Cost I: CCL Cost I: NWERS S15 07 0.57 Asceptor Table 6-4 L) Component and cladding Height (BT) Cost I: CCL Cost I: NWERS S15 07 0.57 Asceptor Table 6-4 L) Component and cladding Height (BT) Cost I: CCL Cost I: NWERS S15 07 0.52 S20 0.7 0.56 S20 0.7 0.76 S20 0.7 0.76 S20 0.81 0.81 60 0.85 0.85 S20 0.43 0.43 90 0.46 0.46 S20 0.43 0.46 S20 0.43 0.46 S20 0.49 0.46 S20 0.41 K***********************************	
$K_{\pm} = 0.85 0.85 Asc = 7-05 \text{ Table 6-4}$ LU Components and clading Height (A) $\frac{400}{10} = \frac{1}{600} = \frac{1}{100} =$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{cases} 60 & 0.85 & 0.85 \\ 70 & 0.94 & 0.84 \\ 80 & 0.93 & 0.93 \\ 90 & 0.94 & 0.94 \\ 100 & 0.99 & 0.99 \\ 120 & 1.04 & 1.04 \\ 1.04 & $	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{bmatrix} 100 & 1.99 & 1.09 \\ 1.09 & 1.09 \\ 1.09 & 1.09 \\ \hline \\ K_{2T} = 1 , no ridges or escarpments at site \\ G C_{pi} = \pm 0.18 , Asce 7-os Figure 6-5 \\ A = \begin{cases} 0.1 \cdot Least Horizontal Dimension , Asce 7-os Figure 6-17 \\ Max & 3' \\ A = \begin{cases} 0.1(117.42) \\ max & 3' \\ A = 11.74 \\ \hline \\ B & (gr) \\ \hline \\ B & (gr) \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \\ \hline $	
$K_{+e} = 1 , \text{ no Fidges or escarpments at site}$ $G \subseteq p_i = \pm 0.18 , \text{ Asce } 7 \text{ os } \text{ Figure } 6 \text{ - 5}$ $A = \begin{cases} 0.1 \cdot \text{ Least Horizontal Dimension} , \text{ Asce } 7 \text{ os } \text{ Figure } 6 \text{ - 17} \\ \text{max} \\ 3 \end{cases}$ $A = \begin{cases} 0.1(117.42) \\ \text{max} \\ 3 \\ \text{A} = 11.74 \end{cases}$ $W_{ind} \frac{\text{Perpendicular to : North / South Wall East / West Wall}{229.5} = 11.742$ $W_{ind} \frac{\text{Perpendicular to : North / South Wall East / West Wall}{1.95 0.51} = \frac{Roof}{0.95^{2}6^{2}, 191^{2}0^{2}} \frac{1091^{2}0^{2}}{191^{2}0^{2}, 00} \frac{1091^{2}0^{2}}{\text{ Asce } 7 \text{ os } 8.27 \text{ os } 8.2$	
$K_{\pm \pi} = 1 , \text{ no tridges or escarpments at site}$ $G_{pi} = \pm 0.18 , Asce 7-05 \text{ Figure 6-5}$ $A = \begin{cases} 0.1 \cdot \text{least Horizontal Dimension} , Asce 7-05 \text{ Figure 6-17} \\ \text{Max} \\ 3' \\ A = \end{cases} \begin{cases} 0.1(117.42) \\ \text{max}(3' \\ A = 11.74 \end{cases}$ $W_{ind} \text{ Perpendicular to : } Morth/South Wall East/West Wall \\ B(\beta \pi) , 229.5 \end{cases}$ $W_{indward} \text{ Leeven d side} \frac{1.95}{0.51} \text{ Side} \frac{\text{Roof}}{[0.95'6''][91'-0'']} \frac{\text{Notes}}{[191'-0'']} \frac{\text{Asce 7-05}}{\text{Asce 7-05}}$	
$GCpi = \pm 0.18 , ASCE 7-05 \ Figure 6-5$ $A = \begin{cases} 0.1 \cdot Least Horizontal Dimension , ASCE 7-05 \ Figure 6-17 \\ max 3' \\ A = \begin{cases} 0.1(117.42) \\ max 3' \\ A = 11.74 \end{cases}$ $Wind \ Perpendicular to : North/South Wall East/West Wall \\ B(dT) \\ L/B \\ Distance From \\ Wind Ward \\ Leeward \\ 1.95 \\ 0.51 \\ 0.51 \\ 0.51 \\ 0.51 \\ 0.51 \\ 0.75' \\ 0.7' \\ 0.5'' \\ 0.7'' \\ 0.5'' \\ 0.7'' \\ 0.5'' \\ 0.7'' \\ 0.5'' \\ 0.7'' \\ 0.5'' \\ 0.7'' \\ 0.7'' \\ 0.5'' \\ 0.7'' \\ 0.5'' \\ 0.7'' \\ 0.5'' \\ 0.7'' \\ 0.5'' \\ 0.7'' \\ 0.5''' \\ 0.5'' \\ 0.5'' \\ 0.$	
$GCpi = \pm 0.18 , ASCE 7-05 \ Figure 6-5$ $A = \begin{cases} 0.1 \cdot Least Horizontal Dimension , ASCE 7-05 \ Figure 6-17 \\ max (3) \\ A = \begin{cases} 0.1(117.42) \\ max (3) \\ A = 11.74 \end{cases}$ $Wind \ Perpendicular to : North/South Wall East/West Wall \\ B(bt) \\ 229.5 \\ 1.742 \end{cases}$ $Wind Ward \ Leeward \\ I.95 \\ 0.51 \\ 0.51 \\ 0.51 \\ 0.51 \\ 0.51 \\ 0.51 \\ 0.551$	
$A = \begin{cases} 0.1 \cdot \text{Least Horizontal Dimension}, ASCE 7-05 Figure 6-17 \\ max (3') \\ A = \begin{cases} 0.1(117.42) \\ max (3') \\ A = 11.74 \end{cases}$ $Wind Perpendicular to : North/South Wall East/West Wall \\ B'(gr) : 229.5 \\ Wind Ward Leeward Side Roof Notes \\ Asce 7-05 \\ Bistance From \\ Wind Ward Leeward Side \\ I.95 \\ 0.51 \\ O,95'6'')[95'6'',191'-0''] [191'-0''] \\ Contended Side \\ Side \\ Contended Sid$	
$\begin{array}{l} & \text{max} \left(\begin{array}{c} 3 \\ A \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \\ 3 \end{array} \right) \\ & \text{max} \left(\begin{array}{c} 3 \end{array} \right) \\ & \text$	
$\begin{array}{l} & \text{max} \left\{ \begin{array}{c} 3'\\ a = \\ \end{array} \right\} \left\{ \begin{array}{c} 0.1(117.42)\\ \\ \text{max} \left\{ \begin{array}{c} 3'\\ a = \\ \end{array} \right\} \left\{ \begin{array}{c} 0.1(117.42)\\ \\ \text{max} \left\{ \begin{array}{c} 3'\\ a = \\ \end{array} \right\} \left\{ \begin{array}{c} 0.1(117.42)\\ \\ \text{max} \left\{ \begin{array}{c} 3'\\ a = \\ \end{array} \right\} \left\{ \begin{array}{c} 0.1(117.42)\\ \\ \text{max} \left\{ \begin{array}{c} 3'\\ a = \\ \end{array} \right\} \left\{ \begin{array}{c} 0.1(117.42)\\ \\ \text{max} \left\{ \begin{array}{c} 3'\\ a = \\ \end{array} \right\} \left\{ \begin{array}{c} 0.1(117.42)\\ \\ \text{max} \left\{$	
$A = \begin{cases} 0.1(117.42) \\ max(3) \\ A = 11.74 \\ \hline Wind Perpendicular to 1 \\ B (gt) \\ \hline Wind Ward \\ \hline L/B \\ \hline Distance From \\ \hline Wind ward Edge \\ \hline Wind ward Edge \\ \hline North/South Wall \\ \hline Leeward Side \\ \hline Log (gt) \\ \hline Lo$	
$\begin{array}{c} max \left(\begin{array}{c} 3 \\ A \end{array} \right) = 11.74 \\ \hline Wind \ Perpendicular \ to : \\ B \ (\beta \tau) \end{array} \qquad $	
$A = 11.74$ $Wind Perpendicular to: North/South Wall East/West Wall B (\beta \tau). Wind Ward Leeward Side Roof Notes L/B Roof Asceros Comparison (1.95 0.51) Distance From Windward Edge Asceros Comparison (1.95 0.51) Distance From Com$	
B (βT) 229.5 117.42 Wind Ward Leeward Side Roof Notes L/B Distance From Under From Under State From Under State From Under State From State	
B (βT) 229.5 117.42 Wind Ward Leeward Side Roo F Notes L/B 1.95 0.51 Io.951 Io.95'6")[95'6",191'-0") [191'-0"] Asce 7-05 Distance From Windward Edge 6.5.11.3 Io.95'6"][95'6",191'-0"] Asce 7-05	
L/B [1.95 0.51] Distance From [0,95'6"] [95'6", 191'0"] [191'0"] ASCE 7-05 Windward Edge 6.5.11.3	
L/B [1.95 0.51] Distance From [0,95'6"] [95'6", 191'-0"] [191'-0"] ASCE 7-05 Windward Edge [1.95]	
Distance From [0,95'6") [95'6", 191'-0") [191'-0") ASCE 7-05 Windward Edge 6.5.11.3	the second se
Windward Edge 6.5.11.3	
Co MINERS 0.8 0.3 0.5 0.7 24.0.18 0.5 0.18 0.3 0.18	
	1

	Thaison Nguyen	Wind Load	3/4
-	$V_{2} = \overline{6} \left(\frac{\overline{2}}{33} \right)^{\overline{R}} V \left(\frac{28}{60} \right)$ $V_{4} = 0.45 \left(\frac{57.3}{33} \right)^{2} (130) \left(\frac{38}{60} \right)$ $V_{4} = 4081.9 \xi_{T}/s$		
	N, = N, L, / V. N, = 1,047 (384.62) /4082.9 N, = 0,10		-
COREMPA	N1,= 4.6 n,h /V; , for Rh N1,= 4.6(1.047)(45.5)(4082.9) N1,= 0.11	•	
An	n, , == 219.5 = 4.6 n, 8 /V, , for R. N, , == 219.5 = 4.6 (1.047)(229.5) / 4082.9 N, , == 219.5 = 0.27	$n_{1.8=117.42} = 4.6 (1.047)(117.42)/4082.9$, for R B $n_{1.8=117.42} = 0.14$	
	R 1, L = 15.4 N, L/V4 , for RL R 1, L = 117.42 = 15.4 (1.047)(117.42) /4082.9 R 1, L = 117.42 = 0.46	n, L= 224.5 = 1.5 (1.047) (229.5 7/4082.9 N, L= 224.5 = 0.91	
	$R_{n} = \frac{7.47 \text{ N}}{(1 + 10.3 \text{ N}_{1})^{5/5}}$ $R_{n} = \frac{7.47(0.1)}{[1 + 10.3(0.1)]^{1/5}}$ $R_{n} = 0.23$		
	$R_{h} = \frac{1}{n_{vh}} - \frac{1}{2n_{vh}} (1 - e^{-2\pi n})$ $R_{h} = \frac{1}{0.11} - \frac{1}{2(0.11)} (1 - e^{-2\pi n})$ $R_{h} = 0.93$		
	$R_{B} = \frac{1}{\pi_{1,3}} - \frac{1}{2\pi_{1,8}} (1 - e^{-2\pi_{1,8}})$ $R_{B,B} = 22a.s = 0.84$	R B, 6: 109.42 = 0,91	
	$R_{L} = \frac{1}{n_{1,L}} - \frac{1}{2n_{1,L}} (1 - e^{-2\pi i_{1,L}})$ $R_{L,L} = \frac{1}{117.41} = 0.75$	R L, L: 229.3 - 0.59	A MARKAN
	β=1 ; ASCE 7-05 C6.5.8 , assume conservative dom	pering retie	
	$R = \int \frac{1}{\beta} R_{\rm R} R_{\rm L} R_{\rm B} (0.53 + 0.47 R_{\rm L})$		

	Thaison Nguyen	Card de l'anne de la	Wind Load	4/4
AMPAO"		$I = \sqrt{g_a^2 Q^2 + g_a^2 R^2}$ $I = \sqrt{g_a^2 Q^2 + g_a^2 R^2}$ $I + 1.7g_v I_a$ $I + 1.7g_v I_a$ $I + 1.7 + 3.4 = 0.274$ $I + 1.7 + 3.4 = 0.274$ Onservative and pr	(7 = 0.59) 	
	$q_{h} = 0.00256(0.99)$ $q_{h} = 41.9 \ 16/4t^{2}$ $P_{mWFRS} = q G_{f} C_{p}$ $P_{ccl} = q(GC_{p}) - c$	$(1)(0.85)(130^{3})(1.15)$ $-q_{i}(GC_{pi}) , q_{i} = q_{i}$ $f_{i}(GC_{pi}) , q_{i} = q_{i}$	P	ده

																				\$								
																	_		Moment (kip-ft)	Wind Perpendicular to East' West Wall	0.00	930.44	1827.84	2871.36	3985.42	5153.36	4800.84	1787.14
		q _I (GC _{pI}). Conservative								7 64	+C. /								Story Overturning Moment (kip-ft)	Wind Perpendicular to North/ South Wall	0.00	2279.83	4379.79	6796.07	9350.26	12009.74	17047.98	3657.24
				.9 Cp=0.18							to:/									Wind Perpendicular to East/ West Wall	427.38	397.47	339.32	278.39	213.13	144.42	72.84	17.02
			Roof	Cp =0.9						27 BC	00.75								Story Shear (kip)	Wind F Eas								
	MWFRS		œ	Cp = 0.5						00.00	CR.U7							Forces	Story SI	Wind Perpendicular to North/ South Wall	1077.86	1004.01	861.53	715.53	561.08	399.87	233.06	34.83
is (Ib/ft ²)		പ		Cp = 0.3						93.01	00.71							External Wind Forces		Wind Perl North/ 5	10	10	86	-2	56	36	23	e
Design Wind Pressures (lb/ft ²		dGrCp	Side							10.00	1.C.R7							Exte	(kip)	Wind Perpendicular to East/ West Wall	29.91	58.15	60.93	65.26	68.71	71.57	55.82	17.02
Design			ard	B/L = 0.51						00.00	58.UZ								r Diaphram	Wind Perp East/ M	26	30	90	99	99	- 71	56	17
			Leeward	B/L = 1.95						83 C F	00.71								Wind Load on Floor Diaphram (kip)	ndicular to uth Wall	84	49	88	46	21	80	23	83
			Windward		19.28	20.98	22.33	23.68	25.71	27.40	28.76	30.11	31.46	32.48	33.49	35.19			Wind	Wind Perpendicular to North/ South Wall	73.84	142.49	145.99	154.46	161.21	166.80	198.23	34.83
	essure q _z	H ²)	MWFRS		24.1	26.2	27.9	29.6	32.1	34.3	35.9	37.6	39.3	40.6	41.9	44.0			Mid	Elevation (ft)	8	23	37	51	65	79	95.5	
	Velocity Pressure q _z	(lb/ff ²)	CCL		29.6	29.6	29.6	29.6	32.1	34.3	35.9	37.6	39.3	40.6	41.9	44.0			Elevation	(#)	0.0	16.0	30.0	44.0	58.0	72.0	86.0	105.0
	Height (ft)		-		<u>_</u> 15	20	25	30	40	50	60	70	80	06	100	120			Floor Level		0	-	2	m	4	5	Roof 1	Top

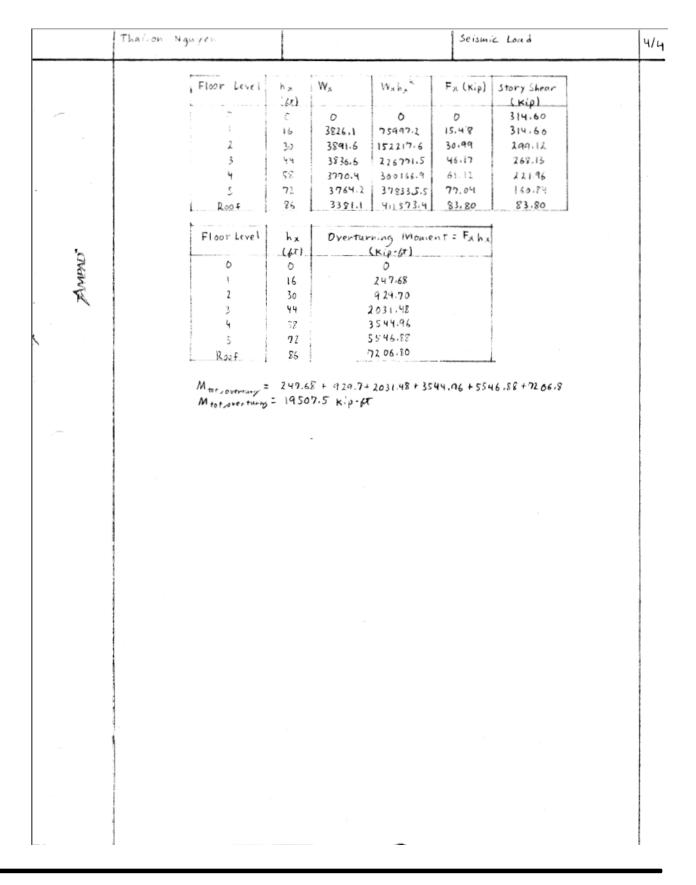
						Design Wind	Design Wind Pressures (lb/ft ²)	ft ²)				
Height (ft)	Velocity P	Velocity Pressure q _z						CCL				
	qI)	(lb/ft ²)			0)b	3Cp), Wind Pe	q(GCp). Wind Perpendicular to North/South Wall	o North/South	Wall			q _I (GC _{pl}), Conservative
•	CCL	MWFRS	Wind	Windward	Leev	Leeward	ŝ	Side		Roof		
			Zone 4	Zone 5	Zone 4	Zone 5	Zone 4	Zone 5	Zone 1	Zone 2	Zone 3	
≤ 15	29.6	24.1	17.76	17.76								
20	29.6	26.2	17.76	17.76								
25	29.6	27.9	17.78	17.76								
30	29.6	29.6	17.76	17.76								
40	32.1	32.1	19.28	19.28								
50	34.3	34.3	20.55	20.55	10.00	14 07	10.00	11 07	04 20	00 88	06 90	7 64
60	35.9	35.9	21.57	21.57	1C.87	10.14	10.87	10.14	00.75	88.00	00.08	±0.5
70	37.6	37.6	22.58	22.58								
80	39.3	39.3	23.60	23.60								
08	40.6	40.6	24.36	24.36								
100	41.9	41.9	25.12	25.12								
120	44.0	44.0	26.39	26.39								
						Design Wind	Design Wind Pressures (lb/ft ²)	ft²)				
Height (ft)	Velocity P	Velocity Pressure q _z						CCL				
	qI)	(lb/ft ²))b	GC _p). Wind P	q(GCp). Wind Perpendicular to East/West Wall	io East/West \	Wall			q _I (GC _{pl}), Conservative
	100	MWFRS	Wind	Windward	Leev	eeward	ŝ	Side		Roof		
			Zone 4	Zone 5	Zone 4	Zone 5	Zone 4	Zone 5	Zone 1	Zone 2	Zone 3	
< 15	29.6	24.1	17.76	17.76								
20	29.6	26.2	17.76	17.76								
25	29.6	27.9	17.76	17.76								
30	29.6	29.6	17.76	17.76								
40	32.1	32.1	19.28	19.28								
50	34.3	34.3	20.55	20.55	10 24	11 07	10 24	41 07	37 RO	68.00	06.30	7 64
60	35.9	35.9	21.57	21.57	0.07	0.1	0.94	10.11	00.10	00.00	00.00	±0.1
70	37.6	37.6	22.58	22.58								
80	39.3	39.3	23.60	23.60								
90	40.6	40.6	24.36	24.36								

25.12 26.39

25.12 26.39

41.9 44.0

41.9 44.0


<u>5</u>

Appendix C: Seismic Load Calculations

Thanson Nguyen Seismic Loads 1/4 Importance Category : III, AJCE7-05 Table 1-1 Importance Factor : 1.25, Asce 7-05 Table 11.5-1 D, ASCE 7-05 11.4.2, 20.3.3, Table 20.3.1 Site Class * Assume special reinforced concrete shear walls -> Lateral system a) Effective Building Weight (Wx = DL+0.25LL) 1) Level: 1 DL = DLSIDG + DLdeck + DLBA + DLSinder - DLFloor og DL Bon = WER + (Agnoss - Aflopening - Amir) + DLenvelope (paring CAMPAD' UL = 1675.5 + 1.62 (Agross - A Fi spening - A stair) Wam= 74 16/ft, W14×74 From 1000 spot check + 217.6 + 74.8 + 7.2 + (1438.8 +1183.7) DL OM = 74 (26440-1571-609) 8.25 DL BIA : 8.97 (24260) DL = 1675.5 + 39.3 +219.6 + 74.8 +7.2 + 1311.25 DL = 3325.7 Kip DL 8 - 217.6 Kip LL = 2001.7 kip , value from Load DLGirber - Sciner Woinder Woirder = 16 16/6t , W24x76 from Determination - DEAD, LIVE, Spot check. DL Giver : { [31.25 t2) + 33(4) + 32 '6](3) RAIN of Appendix. + [29.25(2)+33+(33-9) Wx = 3325 7+0.25 (2001.7) W1 = 3816.1 Kip + 32% + (33-8.5) + 33(4)]} • 76 DL Ginder = [580 - 304.2] + 76 DL Girder = 74.8 Kip 2) Level : 2 -> 5 DL = {1822.6 + 1.62 (Agross - A signating - Actain) Agross - A properting - Astain = 26440 - 293 - 609 = 255 = 26440 -293 - 509 = 25538 + 8.97 (Agross - A +1 opening - Astor) + 76 [620 + 304.2 + 29.25 + 32 %] 1000 + 4.1 { + + 1 (1183.7) + 1194.2 + 1373.7 + 10 51.7 + 1 (1061.3) DL = 8706.5 + 4452.1 DL = 13158.8 - p LL = 2103.9 + 4 , value from Lond Determination -DEAD SILVE , RAIN of Append's LL = 2415.6 K p >

	Thatson Nguyen	Selsmic Load	2/4
	Elogr Level DL einelope (***) DL (Kip) Wx 2 1188.45 3365.6 3841.6 3 1133.45 3310.6 3836.6 4 1067.7 3244.4 3770.4 5 1061.5 3238.2 3764.2		
CAMINA	3) Level 1: Roo f $DL = 1794.1 + 1.45(26440) + 9.2(26440) + 76.1000 + 76 - [680 + 304.2 + 29.25 + 32 V_6] + [1000 + 120$		
	4) Total Effective Weight W _{x,rot} : 3826.1+ 3891.6+ 3836.6+ 3770.4+376 W _{x,rot} = 22470 Kip	4.2 + 3381.1	a - der ver Andrew unterstelle unterstellte der Andrew Andrew Konsteller
	b) Equivalent Lateral Load 1) V_{base} $S_s = \frac{6.3}{100}$, Asce 7-05 Figure 22-1 100 $S_s = 0.063$		an care a to care a to care a manufacture carendo a car se ajo a que esc
	$S_1 = 2.2$, ASCE 7-05 Figure 22-2 100 $S_1 = 0.022$ $F_a = 1.6$, ASCE 7-05 Table 11.4-1 $F_{y} = 2.4$, ASCE 7-05 Table 11.4-2		e name e a man ann ann ann ann an an an an an an an
		;	

	The sam laguyer Seismic Lood	3/1
- CHONNE	$S_{m,2} S_{4} F_{n}$ $S_{m} = 0.063 (1.5)$ $S_{m} = 0.0101$ $S_{m} = 0.022 (2.3)$ $S_{m} = 0.025$ $S_{m} = \frac{2}{3} S_{m}$ $S_{01} = 0.035$ Selismic Design Category (Short Period): A , Asce 7-05 Table 11.6-1 Selismic Design Category (Short Period): A , Asce 7-05 Table 11.6-1 Selismic Design Category (Short Period): A , Asce 7-05 Table 11.6-2 $h_{m} = 105'$ $C_{T} = 0.2 , Asce 7-05 Table (12.5-2)$ $(= 2.7), Asce 7-05 Table (12.5-2)$ $T_{m} \leq 8 sec, Asce 7-05 Figure 22-15$ $T_{m} < C_{m}h_{m}^{m}, Asce 7-05 Figure 22-15$ $T_{m} < C_{m}h_{m}^{m}, Asce 7-05 Figure 12.3-1$ $R = 6 , Asce 7-05 Figure 12.2-1$ $R = 2.5 , Asce 7-05 Figure 12.2-1$ $R = 2.5 , Asce 7-05 Figure 12.2-3$ $\frac{1}{5}$ $V_{max} = 314.6 K_{P}$ $R = 1 + (T = 0.5) (2-1) , Asce 7-05 Equation 12.2-3$ $R = 1 + (T = 0.5) (2-1) , Bice 7-05 Equation 12.2-3$ $R = 1 + (T = 0.5) (2-1) , Bice 7-05 Equation 12.2-3$ $R = 1 + (T = 0.5) (2-1) , Rice 7-05 Equation 12.2-3$ $R = 1 + (T = 0.5) (2-1) , Rice 7-05 Equation 12.2-3$ $R = 1 + (T = 0.5) (2-1) , Rice 7-05 Equation 12.2-3$ $R = 1 + (T = 0.5) (2-1) , Rice 7-05 Equation 12.2-3 R + 10.78$	
	2) Story Shear (Vx) and Overturning Moment $C_x = \frac{W_x h_x^R}{\Sigma_{W_x h_x^R}}$ $\overline{C} = C_x V_{base}$, equivalent lateral Load at floer level	

